Skip to content

1067: 能量项链

题目

题目描述

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m×r×n(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。

我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。 则第4、1两颗珠子聚合后释放的能量为: (4⊕1)=10×2×3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为 ((4⊕1)⊕2)⊕3)=10×2×3+10×3×5+10×5×10=710

输入格式

输入文件的第一行是一个正整数$N$($ 4 \leq N \leq 100 $),表示项链上珠子的个数。第二行是$N$个用空格隔开的正整数,所有的数均不超过$1000$。

第$i$个数为第$i$颗珠子的头标记($ 1 \leq i \leq N $),当$1≤i<N$ 时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。 至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式

输出文件只有一行,是一个正整数E(E ≤ 2100000000),为一个最优聚合顺序所释放的总能量。

样例输入

text 4 2 3 5 10

样例输出

text 710

数据范围

$ 4≤N≤100 $,代表标记的整数均不超过1000。

Oops! 本题目还没有解答!

助教老师们编题的速度,已经超过了解题的速度!

OJ翻了一新,但本解答集还大多用的是2017-2019级,甚至更早的同学们贡献的答案。

如果你已经AC了,可以的话,请您参考添加页面,与大家一起分享你的题解!